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Abstract
We investigate the angular distribution of positrons in the coherent process electron–positron
pair creation process by high-energy photons in a periodically deformed single crystal with a
complex base. The formula for the corresponding differential cross section is derived for an
arbitrary deformation field. The case is considered in detail when the photon enters into the
crystal at small angles with respect to a crystallographic axis. The results of the numerical
calculations are presented for SiO2 and diamond single crystals and Moliere parameterization
of the screened atomic potentials in the case of the deformation field generated by an acoustic
wave of S-type.

1. Introduction

The investigation of high-energy electromagnetic processes
in crystals is of interest not only from the viewpoint of
underlying physics but also from the viewpoint of practical
applications. From the point of view of controlling the
parameters of various processes in a medium, it is of interest
to investigate the influence of external fields, such as acoustic
waves, temperature gradient, etc, on the corresponding
characteristics. The considerations of concrete processes, such
as diffraction radiation [1], transition radiation [2], parametric
x-radiation [3], channeling radiation [4] and bremsstrahlung by
high-energy electrons [5], have shown that the external fields
can essentially change the angular frequency characteristics
of the radiation intensities. Recently there has been broad
interest in compact crystalline undulators with periodically
deformed crystallographic planes as an efficient source of high-
energy photons [6] (for a review with a more complete list of
references see [7]).

Motivated by the fact that the basic source for the creation
of positrons for high-energy electron–positron colliders is
the electron–positron pair creation by high-energy photons
(for a recent discussion see, for example, [8]), in [9]
we have investigated the influence of the hypersonic wave
excited in a crystal on this process. To have an essential
influence of the acoustic wave, high-frequency hypersound
is needed. Usually this type of wave is excited by a
high-frequency electromagnetic field through the piezoelectric
effect in crystals with a complex base. In the papers [10, 11]

we have generalized the results of [9] for crystals with
a complex base and for acoustic waves with an arbitrary
profile. For the experimental detection of final particles in the
process of coherent pair production it is important to know
their angular distribution. In the present paper the angular
distribution of positrons in the coherent pair production in
crystals is investigated in the presence of a hypersonic wave.
The numerical calculations are carried out for quartz and
diamond single crystals and for the photons of energies 20 and
100 GeV.

This paper is organized as follows. In section 2 we
derive the general formula for the coherent part of the pair
creation cross section averaged on thermal fluctuations and
the conditions are specified under which the influence of the
deformation field can be considerable. In section 3 the analysis
of the general formula is presented in the cases when the
photon enters into the crystal at small angles with respect
to the crystallographic axes or planes and the results of the
numerical calculations for the cross section as a function of the
angle between the momenta of photon and positron are shown.
Section 4 summarizes the main results of the paper.

2. Angular dependence of the cross section

By making use of the results for the bremsstrahlung derived
in [12], after the redefinition of the variables, we find
the differential cross section for the electron–positron pair
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production on an individual atom:

d5σ0±
dε+ dq‖ dq⊥ dy

= e2

8π4ω2

q2
⊥

q2
‖

×
[

ω2

2ε+ε−
− 1 + 4y2 δ±

q‖

(
1 − δ±

q‖

)] |u(q)|2√
1 − y2

= |u(q)|2σ0(q, y), (1)

where e is the electron charge, ω, ε+ and ε− are the energies
of photon, positron and electron, respectively (the system of
units h̄ = c = 1 is used), δ± = m2

eω/(2ε+ε−), where
me is the mass of electron, q‖ and q⊥ are the components
of the vector of momentum transfer q, q = k − p+ − p−
(k, p+, p− are the momenta of photon, positron and electron,
respectively), parallel and perpendicular to the direction of the
photon momentum, and u(q) is the Fourier transform of the
atom potential. The variable y is expressed in terms of the
angle θ+ between the momenta k and p+ by the following
relation:(
ωθ+
me

)2

= 1

δ±

(
q‖ − δ± − q2

⊥
2ω

+ q2
⊥δ±
m2

e

)

+ y
2q⊥
me

(
q‖
δ±

− 1 − q2
⊥

2ωδ±

) 1
2

. (2)

The regions of variables q‖, q⊥, y in cross section (1) are as
follows [12]:

q‖ � δ± + q2
⊥

2ω
, −1 � y � 1, q⊥ � 0. (3)

The differential cross section for the pair creation in a
crystal can by written in the form [10]

σ (q, y) ≡ d5σ0±
dε+ dq‖ dq⊥ dy

=
∣∣∣∣
∑
n, j

u( j)
q eiqr( j )

n

∣∣∣∣
2

σ0(q, y), (4)

where r( j)
n is the position of an atom in the crystal. In the

discussion that follows, the collective index n enumerates the
elementary cell and the subscript j enumerates the atoms in a
given cell of a crystal. Here q is the momentum transferred to
the crystal, q = k − p+ − p−, and the differential cross section
in a crystal given by (4) differs from the cross section on an
isolated atom by the interference factor which is responsible
for coherent effects arising due to the periodic arrangement
of the atoms in the crystal. At non-zero temperature one has
r( j)

n = r( j)
n0 + u( j)

tn , where u( j)
tn is the displacement of the j th

atom with respect to the equilibrium positions r( j)
n0 due to the

thermal vibrations. After averaging on thermal fluctuations,
the cross section is written in the form (see, for instance [9] for
the case of a crystal with a simple cell)

σ(q, y) =
{

N
∑

j

|u( j)
q |2

(
1 − e−q2u( j )2

t

)

+
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∑
n, j

u( j)
q eiqr( j )

n0 e− 1
2 q2u( j )2

t

∣∣∣∣
2}
σ0(q, y), (5)

where N is the number of cells, u( j)2
t is the temperature-

dependent mean-squared amplitude of the thermal vibrations

of the j th atom and e−q2u( j )2
t is the corresponding Debye–

Waller factor. In formula (5) the first term in braces does not
depend on the direction of the vector k and determines the
contribution of incoherent effects. The contribution of coherent
effects is presented by the second term. By taking into account
formula (1) for the cross section on a single atom, in the region
ωq2

⊥/ε+m2
e � 1 the corresponding part of the cross section in

a crystal can be presented in the form

σc = e2

8π4ω2

q2
⊥

q2
‖

[
ω2

2ε+ε−
− 1 + 4y2 δ±

q‖

(
1 − δ±

q‖

)]

× 1√
1 − y2
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∑
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u( j)
q eiqr( j )

n0 e− 1
2 q2u( j )2

t
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2

. (6)

When external influences are present (for example, in the
form of acoustic waves) the positions of atoms in the crystal
can be written as r( j)

n0 = r( j)
ne + u( j)

n , where r( j)
ne determines

the equilibrium position of an atom in the situation without
deformation and u( j)

n is the displacement of the atom caused
by the external influence. We consider deformations with the
periodic structure

u( j)
n = u0 f (ksr( j)

ne ), (7)

where u0 and ks are the amplitude and wavevector
corresponding to the deformation field, f (x) is an arbitrary
function with the period 2π , max f (x) = 1. In the discussion
that follows, we assume that f (x) ∈ C∞(R). Note that we
can disregard the dependence of u( j)

n on the time coordinate
for the case of acoustic waves, as for the particle energies we
are interested in, the characteristic time for the change of the
deformation field is much greater compared with the passage
time of particles through the crystal. For the deformation field
given by equation (7) the sum over the atoms in equation (5)
can be transformed into the form

∑
n

u( j)
q eiqr( j )

n0 =
∞∑

m=−∞
Fm(qu0)

∑
n

u( j)
q eiqmr( j )

ne , (8)

where qm = q + mks and Fm(x) is the Fourier transform of
the function eix f (t):

Fm(x) = 1

2π

∫ π

−π
eix f (t)−imt dt . (9)

Below we need to have the asymptotic behavior of this function
for large values of m. For a fixed x and under the assumptions
for the function f (x) given above, by making use of the
stationary phase method we can see that Fm(x) ∼ O(|m|−∞)
for m −→ ∞.

For a lattice with a complex cell the coordinates of the
atoms can be written as rne = Rn + ρ j , with Rn being the
positions of the atoms for one of the primitive lattices and ρ j
are the equilibrium positions for other atoms inside the nth
elementary cell with respect to Rn . By taking this into account,
one obtains

∞∑
m=−∞

Fm(qu0)
∑
j,n

u( j)
q e− 1

2 q2u( j )2
t eiqmr( j )

ne

=
∞∑

m=−∞
Fm(qu0)S(q,qm)

∑
n

eiqm Rn , (10)
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where

S(q,qm) =
∑

j

u( j)
q eiqmρ( j )

e− 1
2 q2u( j )2

t (11)

is the factor determined by the structure of the elementary cell.
For thick crystals the sum over cells in (10) can be presented
as a sum over the reciprocal lattice:

∑
n

eiqm Rm = (2π)3

�

∑
g

δ(q − gm), gm = g − mks,

(12)
where � is the unit cell volume and g is the reciprocal lattice
vector. Due to the δ function in this formula, the corresponding
momentum conservation is written in the form

k = p+ + p− + g − mks , (13)

where −mks stands for the momentum transfer to the external
field. As the main contribution to the coherent part of the
cross section comes from the longitudinal momentum transfer
of order δ the influence of the external excitation may be
considerable if |m|ks is of order δ. The corresponding
condition will be specified later. Another consequence of the
δ function in (12) is that the function (9) enters into the cross
section in the form Fm(gmu0). Now it can be seen that in the
sum over m in (10) the main contribution comes from the terms
for which |mksu0| � |gu0|, or equivalently |m| � λs/a, where
λs = 2π/ks is the wavelength of the external excitation and a
is of the order of the lattice spacing. Indeed, for the terms with
|mksu0| 
 |gu0| one has Fm(gmu0) ≈ Fm(mksu0) and the
phase of the integrand in (9) is equal to m[ksu0 f (t)−t]. Under
the condition |ksu0 f ′(t)| < 1 this phase has no stationary
point and one has Fm(mksu0) = O(|m|−∞), m −→ ∞
and the corresponding contribution is strongly suppressed. By
taking into account that, for practically important cases one has
ksu0 ∼ u0/λs � 1, we see that the assumption made means
that the derivative f ′(t) is not too large. In a way similar to
that used in [10], it can be seen that the square of the modulus
for the sum (8) is written as∣∣∣∣
∑
n, j

u( j)
q eiqr( j )

n0 e− 1
2 q2u( j )2

t

∣∣∣∣
2

= N
(2π)3

�

∑
m,g

|Fm(gmu0)|2|S(gm, g)|2, (14)

where N is the number of cells.
Substituting this expression into formula (6) and

integrating over the vector q by using the δ function, for the
cross section one obtains

dσ =
∫
σ(q)d3q = N(dσn + dσc), (15)

with dσn and dσc being the incoherent and coherent parts of the
cross section per atom and N0 is the number of atoms in the
crystal. The coherent part of the cross section is determined by
the formula
d2σ c±

dε+ dy
= e2 N

πω2 N0�

∑
m,g

g2
m⊥

g2
m‖

[
ω2

2ε+ε−
− 1

+ 4y2 δ±
gm‖

(
1 − δ±

gm‖

)] |Fm(gmu0)|2|S(gm, g)|2√
1 − y2

, (16)

where the vector gm is defined by relation (12) and now the
relation between the variables y and θ+ is written in the form

y = me

2gm⊥

× (ωθ+/me)
2 − 1/δ±(gm‖ − δ± − g2

m⊥/(2ω)+ g2
m⊥δ±/m2

e)

[gm‖/δ± − 1 − g2
m⊥/(2ωδ±)]

1
2

.

(17)

The regions of variables in cross section (4) are

gm‖ � δ± + g2
m⊥

2ω
, −1 � y � 1, gm⊥ � 0. (18)

For a sinusoidal deformation field, f (z) = sin(z +ϕ0), one has
the Fourier transform

Fm(x) = eimϕ0 Jm(x), (19)

with the Bessel function Jm(x).
The formula for the pair creation in an undeformed crystal

is obtained from (16) taking u0 = 0. In this limit, the
contribution of the term with m = 0 remains only with
F0(0) = 1. Now we see that formula (16) differs from
the formula in an undeformed crystal by the replacement
g → gm and by the additional summation over m with the
weights |Fm(gmu0)|2. This corresponds to the presence of an
additional one-dimensional superlattice with the period λs and
the reciprocal lattice vector mks , m = 0,±1,±2, . . .. As the
main contribution to the cross section comes from the terms
with gm‖ ∼ δ±, the influence of the deformation field may be
considerable if |mks‖| � δ±. Combining this with the previous
estimates, we find the following condition: u0/λs � a/4π2lc .
At high energies one has a/ lc � 1 and this condition can be
consistent with the condition u0/λs � 1.

In the presence of the deformation field the number of
possibilities to satisfy the condition gm‖ � δ± + g2

m⊥/(2ω)
in the summation of formula (16) increases due to the term
mks‖ in the expression for gm‖. This leads to the appearance
of additional peaks in the angular distribution of the radiated
positrons. After the integration of (16) over y, due to these
additional peaks, there can be an enhancement of the cross
section of the process [10].

3. Limiting cases and numerical results

In the following, we consider the case when the photon
enters into the crystal at small angle θ with respect to
the crystallographic z axis of the orthogonal lattice. The
corresponding reciprocal lattice vector components are gi =
2πni/ai , ni = 0,±1,±2, . . ., where ai , i = 1, 2, 3, are
the lattice constants in the corresponding directions. For the
longitudinal component we can write

gm‖ = gmz cos θ + (gmy cosα + gmx sinα) sin θ, (20)

where α is the angle between the projection of the vector k
on the plane (x, y) and axis y. For small angles θ the main
contribution to the cross section comes from the summands

3
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with gz = 0. Having made the replacement of variable
y → ωθ+/me using formula (17) from formula (16) one finds

d2σ c±
dε+ d(ωθ+/me)

≈ e2 N

πω2 N0�

∑
m,gx ,gy

g2
⊥

g2
m‖

×
[

ω2

2ε+ε−
− 1 + 4y2(θ+)

δ±
gm‖

(
1 − δ±

gm‖

)]

× |Fm(gmu0)|2|S(gm, g)|2√
1 − y2(θ+)

× ωθ+/me

(g⊥/me)(gm‖/δ± − 1 − g2
⊥/(2ωδ±))

1
2

, (21)

where the notation y2(θ+) is introduced in accordance with

y2(θ+) = m2
e

4g2
⊥

[(ωθ+/me)
2 − (1/δ±)(gm‖ − δ± − g2

⊥/(2ω)

+ g2
⊥δ±/m2

e)]2[gm‖/δ± − 1 − g2
m⊥/(2ωδ±)]−1. (22)

In (21) g2
⊥ = g2

x + g2
y and the summation goes over the region

gm‖ � δ± + g2
m⊥/(2ω), 0 � y2(θ+) � 1 with

gm‖ ≈ −mkz + (gmx sinα + gmy cosα)θ. (23)

Note that in the argument of the functions Fm and S we have
gm ≈ (gx, gy, 0).

We now assume that the photon enters into the crystal
at a small angle θ with respect to the crystallographic axis
z and near the crystallographic plane (y, z) (the angle α is
small). In this case with the change of δ±, the sum over
gx and gy will drop sets of terms which lead to the abrupt
change of the corresponding cross section. Two cases have
to be distinguished. Under the condition δ± ∼ 2πθ/a2, in
equation (21) for the longitudinal component, one has

gm‖ ≈ −mks‖ + θgy � δ± + g2
⊥

2ω
. (24)

Formula (21) can be further simplified under the assump-
tion u0 ⊥ a1. In this case, in the argument of the function Fm ,
one has gmu0 ≈ gyu0y and we obtain the formula

d2σ c±
dε+d(ωθ+/me)

≈ e2 N

π2ω2 N0�

∑
m,gx ,gy

g2
⊥

g2
m‖

×
[

ω2

2ε+ε−
− 1 + 4y2(θ+)

δ±
gm‖

(
1 − δ±

gm‖

)]

× |Fm(gyuy0)|2|S(gm, g)|2√
1 − y2(θ+)

× ωθ+/me

(g⊥/me)[gm‖/δ± − 1 − g2
⊥/(2ωδ±)]

1
2

. (25)

In the second case, we assume that δ± ∼ 2πθα/a1. Now
the main contribution to the sum in equation (21) comes from
terms with gy = 0 and summations remain over m and n1,
gx = 2πn1/a1. The formula for the cross section takes the

form

d2σ c±
dε+d(ωθ+/me)

≈ e2 N

π2ω2 N0�

∑
m,n1

g2
m⊥

g2
m‖

×
[

ω2

2ε+ε−
− 1 + 4y2(θ+)

δ±
gm‖

(
1 − δ±

gm‖

)]

× |Fm(gmu0)|2|S(gm, g)|2√
1 − y2(θ+)

× ωθ+/me

(gm⊥/me)[gm‖/δ± − 1 − g2
m⊥/(2ωδ±)]

1
2

, (26)

where
gm‖ ≈ −mkz + gxψ, ψ = αθ, (27)

and the summation goes over the values m and n1 satisfying
the condition gm‖ � δ± + g2

x/(2ω).
We have carried out numerical calculations for the pair

creation cross section for various values of parameters in the
case of the SiO2 single crystal at zero temperature. To deal
with an orthogonal lattice, we choose as an elementary cell the
cell including 6 atoms of silicon and 12 atoms of oxygen (the
Shrauf elementary cell [13]). For this choice the y and z axes
of the orthogonal coordinate system (x, y, z) coincide with the
standard Y and Z axes of the quartz crystal, whereas the angle
between the axes x and X is equal to π/6. For the potentials of
atoms we take Moliere parameterization with

u( j)
q =

3∑
i=1

4π Z j e2αi

q2 + (χi/R j)2
(28)

where αi = {0.1, 0.55, 0.35}, χi = {6.0, 1.2, 0.3} and R j is
the screening radius for the j th atom in the elementary cell.

The calculations are carried out for the sinusoidal
transversal acoustic wave of S-type (the corresponding
parameters can be found in [14]) for which the vector of the
amplitude of the displacement is directed along the X direction
of the quartz single crystal, u0 = (u0, 0, 0), and the velocity is
4.687×105 cm s−1. The vector determining the direction of the
hypersound propagation lies in the plane Y Z and has an angle
with the axis Z equal to 0.295 rad. As the axis z we choose
the axis Z of the quartz crystal. The corresponding function
F(x) is determined by formula (9). In order to illustrate the
dependence of the results on the type of crystal we also present
the numerical data for the diamond monocrystal.

Numerical calculation shows that, in dependence of the
values for parameters, the external excitation can either
enhance or reduce the cross section of the pair creation
process. As an illustration of the enhancement in the cross
section integrated over the angle θ+, in the left panel of
figure 1 we have plotted the quantity 10−3(m2

eω/e
6) dσ c±/dε+,

evaluated by using the formula from [10], as a function of
the ratio ε+/ω in the case of the SiO2 monocrystal and
Moliere parameterization of the screened atomic potential for
2πu0/a1 = 0 (dashed curve) and 2πu0/a1 = 6.07 (full
curve). In the right panel the same quantity is plotted as a
function of 2πu0/a1 for the positron energy corresponding to
ε+/ω = 0.5. The values for the other parameters are taken
as follows: ω = 20 GeV, ψ = 0.005 52, νs = 5 × 109 Hz

4
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Figure 1. Coherent pair creation cross section, 10−3(m2
eω/e

6) dσ c
±/dε+, evaluated by the formula from [10], as a function of ε+/ω for

2πu0/a1 = 0 (dashed curve), 2πu0/a1 = 6.07 (full curve), and as a function of 2πu0/a1 (right panel) for the positron energy corresponding
to ε+/ω = 0.5. The values for the other parameters are as follows: ψ = 0.005 52, ω = 20 GeV, νs = 5 × 109 Hz.

for the frequency of acoustic waves. For the amplitude of
the deformation field corresponding to the numerical data of
figure 1 the relative displacement of the neighboring atoms is
of the order 10−3 Å, which is much smaller than the interatomic
distance (∼5 Å).

For these values of parameters, when one has an
enhancement of the cross section integrated over the angle θ+,
we have numerically analyzed the angular dependence of the
pair creation cross section by making use of formula (26). In
figure 2 the quantity 10−3(m2

eω/e
2) d2σ c±/dε+ dθ+ is depicted

as a function of ωθ+/me in the case of the SiO2 monocrystal
for u0 = 0 (dashed curve) and 2πu0/a1 = 6.07 (full curve).
The values for the other parameters are taken as follows:
ε+/ω = 0.5, ω = 20 GeV, νs = 5 × 109 Hz, ψ = 0.005 52.

In order to see the dependence of the results on the
energy of the incoming photon, in figure 3 we have presented
the quantity 10−3(m2

eω/e
2) d2σ c±/dε+ dθ+ as a function of

ωθ+/me in the case of the SiO2 monocrystal for the values
of parameters ε+, ψ and u0 taken from [10], for which the
integrated cross section is enhanced (reduced) by the acoustic
wave. The dashed curves in both panels correspond to the
situation when the deformation field is absent (u0 = 0). The
full curve in the left (right) panel is for the amplitude of the
deformation field corresponding to the value 2πu0/a1 = 1.1
(left panel, enhanced) (2πu0/a1 = 2.14, right panel, reduced).
The values for the other parameters are as follows: ε+/ω =
0.5, ω = 100 GeV, νs = 5 × 109 Hz, ψ = 0.001.

It is also interesting to see the dependence of the results
presented before on the type of crystal. In figure 4 we have
plotted the quantity 10−6(m2

eω/e
2) d2σ c±/dε+ dθ+ as a function

of ωθ+/me in the case of the diamond monocrystal for u0 =
0 (dashed curves), 2πu0/a1 = 2.5 (left panel, full curve,
enhanced) and for 2πu0/a1 = 3.8 (right panel, full curve,
reduced). The values for the other parameters are taken as
follows: ε+/ω = 0.5, ω = 100 GeV, νs = 5 × 109 Hz,
ψ = 0.001 42.

As we see from the presented examples, the presence of
the deformation field leads to the appearance of additional
peaks in the angular distribution of the emitted positron (or
electron) even for such ranges of values of an angle of positron

Figure 2. Coherent pair creation cross section,
10−3(m2

eω/e
6)d2σ c

±/dε+ d(ωθ+/me), evaluated by formula (26), as a
function of ωθ+/me for 2πu0/a1 = 0 (dashed curve),
2πu0/a1 = 6.07 (full curve) and ψ = 0.005 52. The values for the
other parameters are as follows: ε+/ω = 0.5, ω = 20 GeV,
νs = 5 × 109 Hz for the frequency of acoustic waves.

momentum, where, due to the requirement −1 � y � 1, the
cross section of the process is zero when the deformation is
absent. As we have already mentioned before, this is related
to that, in the presence of the deformation field, the number of
possibilities to satisfy the condition gm‖ � δ± + g2

m⊥/(2ω) in
the summation in formula (16) increases due to the presence of
the additional term mks‖ in the expression for gm‖.

4. Conclusion

The present paper is devoted to the investigation of the angular
distribution of the positron in the pair creation process by high-
energy photons in a crystal with a complex lattice base in the
presence of a deformation field of an arbitrary periodic profile.
The latter can be induced, for example, by acoustic waves.
The influence of the deformation field can serve as a possible
mechanism to control the angular-energetic characteristics of
the created particles. The importance of this is motivated by the
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Figure 3. Coherent pair creation cross section for the SiO2 crystal, 10−3(m2
eω/e

6) d2σ c
±/dε+ d(ωθ+/me), evaluated by formula (26), as a

function of ωθ+/me for 2πu0/a1 = 0 (dashed curve), 2πu0/a1 = 1.1 (full curve) and ψ = 0.001 (left panel) and as a function of ωθ+/me for
2πu0/a1 = 0 (dashed curve), 2πu0/a1 = 2.14 (full curve) and ψ = 0.001 (right panel). The values for the other parameters are as follows:
ε+/ω = 0.5, ω = 100 GeV, νs = 5 × 109 Hz for the frequency of acoustic waves.

Figure 4. Coherent pair creation cross section for the diamond crystal, 10−6(m2
eω/e

6) d2σ c
±/dε+ d(ωθ+/me), evaluated by formula (26), as a

function of ωθ+/me for 2πu0/a1 = 0 (dashed curve), 2πu0/a1 = 2.5 (full curve) and ψ = 0.001 42 (left panel) and as a function of ωθ+/me

for 2πu0/a1 = 0 (dashed curve), 2πu0/a1 = 3.8 (full curve) and ψ = 0.001 42 (right panel). The values for the other parameters are as
follows: ε+/ω = 0.5, ω = 100 GeV, νs = 5 × 109 Hz for the frequency of acoustic waves.

fact that the basic source for creating positrons for high-energy
colliders is the electron–positron pair creation by high-energy
photons. In a crystal the cross section is a sum of coherent
and incoherent parts. The coherent part of the cross section
per single atom, averaged over thermal fluctuations, is given
by formula (16). In this formula the factor |Fm(gmu0)|2 is
determined by the function describing the displacement of the
atoms due to the deformation field and the factor |S(gm, g)|2
is determined by the structure of the crystal elementary
cell. Compared with the cross section in an undeformed
crystal, formula (17) contains an additional summation over
the reciprocal lattice vector of the one-dimensional superlattice
induced by the deformation field. We have argued that the
influence of the deformation field on the cross section can
be remarkable under the condition 4π2u0/a � λs/ lc . Note
that, for the deformation with 4π2u0/a > 1, this condition
is less restrictive than the naively expected one λs � lc. The
role of coherence effects in the pair creation cross section is
essential when the photon enters into the crystal at small angles
with respect to a crystallographic axis. In this case the main
contribution to the coherent part of the cross section comes

from the crystallographic planes, parallel to the chosen axis
(z axis in our consideration). The behavior of this cross section
as a function of the positron energy essentially depends on the
angle θ between the projection of the photon momentum on
the plane (x, y) and the y axis. When the photon enters into
the crystal near a crystallographic plane, two cases have to be
distinguished. For the first one (θ ∼ a2/2πlc) formula (21)
is further simplified to the form (25) under the assumption
u0 ⊥ a1. In the second case one has ψ = αθ ∼ a1/2πlc

and the main contribution to the cross section comes from
the crystallographic planes parallel to the incidence plane.
The corresponding formula for the cross section takes the
form (26). The numerical calculations for the cross section
are carried out in the case of the SiO2 single crystal with the
Moliere parameterization of the screened atomic potentials and
for the deformation field generated by the transversal acoustic
wave of S-type with frequency 5 GHz. In order to illustrate the
dependence of the results on the type of crystal we have also
presented the results for the diamond monocrystal. Examples
of numerical results are presented in the figures. The numerical
calculations for values of the parameters in the problem when
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one has an enhancement of the cross section show that the
presence of the deformation field leads to the appearance of
additional peaks in the angular distribution of the radiated
positron (or electron) even for such ranges of values of an angle
of a positron where, due to the requirement −1 � y � 1, the
cross section is zero when the deformation is absent. This can
be used to control the parameters of the positron sources for
storage rings and colliders.
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